
points show the constant flow rate case and Eq. (3.3), respectively. Processing of the ex- 
perimental data of [3] also gives values close to the theory. We note that the results ob- 
tained lie above the data of [14], which is evidently due to the difference of geometry of 
the wetted bodies and to the unsteady nature of the heat transfer process in an experiment 
conducted on thermally nonconducting materials in the zone behind the blowing section. For 
these conditions of the isothermal surface from the data reduction we can evaluate the heat 
flux to the conical surface as a function of the governing parameters of the problem. 
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DYNAMICS OF LOW-AMPLITUDE PULSE WAVES IN VAPOR -GAS -DROP SYSTEMS 

D. A. Gubaidullin and A. I. Ivandaev UDC 532.529:534.2 

The propagation of weak monochromatic waves in vapor and gas suspensions, as well as in 
gas, vapor, and fluid drop mixtures, was treated in [1-8]. In the present paper we present 
results on propagation of low-amplitude pulse perturbations in single- and two-component gas- 
drop systems. An evolution wave-like equation, describing the propagation of linear pertur- 
bations in single-component suspensions in the prsence of phase transformations, is obtained 
and analyzed. Using the fast Fourier transform method, the evolution of a single pulse per- 
turbation in a two-component vapor-gas-drop mixture is calculated. The evolution of inter- 
phase friction and phase transformation effects on the wave evolution process are analyzed. 

The two-velocity and three-temperature continuum model [9] is used under conditions of 
acoustic homogeneity of the monodisperse mixture under consideration to investigate a variety 
of effects. We write down the linearized equations of planar one-dimensional motion in the 
presence of phase transitions. In a coordinate system in which the unperturbed mixture is at 
rest the conservation equations of mass, momentum, and energy of the phases are [8] 
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Here p, p0, v, and p are the reduced and true density , velocity, and pressure; a is the bulk 
content; n is the number of particles per unit volume; f is the force exerted by the host 
phase on an individual drop; JVE is the diffusion flux of vapor to the surface of the drop 
Z; jE is the condensation intensity at the surface of the drop; i, u, and s are the specific 
enthalpy, internal energy, and vapor formation heat; qjz is the intensity of heat exchange 
of the j-th phase with the surface of the drop (j = i, 2); the subscripts 1 and 2 refer to 
parameters of the gas and suspended phases; V and G denote parameters of the vapor and gas 
components of the host phase; the prime superscripts denote perturbation parameters; and the 
subscript 0 corresponds to the initial unperturbed state. It is assumed that the components 
of the gas phase are calorically ideal gases. The drops are assumed to be incompressible. 

According to the principle of superposition, within linear analysis any acoustic per- 
turbation can be reprsented as the sum of two harmonic waves superimposed on each other. 
In that case effects related to nonharmonicity of a pulse can be determined as the sum of 
effects created separately by each of the harmonic components. Therefore, in providing laws 
of interphase interaction we use relations obtained for harmonic perturbations. 

In providing the force interaction of phases we take into account that the basic forces 
acting on a particle of the disperse phase are Stokes and Bass forces. The expression for 
the total force is [8] 
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where ~pl 
in the gas phase, ~v is the Stokes relaxation time of phase velocities, rv is its complex 
analog, p~ is the dynamic viscosity of the host phase, and i is the imaginary unit. 

To determine the dependence of thermal fluxes qj7 (J = i, 2) on the oscillation fre- 
quency m of harmonic components we use the expressions [5] 
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Here T~j is the complex relaxation time of temperature in the j-th phase, determined by the 
characteristic time TXj and the frequency ~; c, X, and • are the heat capacity, heat con- 
ductivity and temperature conductivity coefficients, and T is the temperature. 

The intensity of the vapor diffusion flux JV~ to the phase separation surface .on fre- 
quency ~ is written as [7] 

- -  - , - -  ( t  - -  kvo)  Td~p (u), 
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is the characteristic time of establishing a quasistationary velocity distribution 
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where ~p is the complex relaxation time parallel to the vapor motion, determined by the char- 
acteristic time ~d, the oscillation frequency, and the vapor concentration in the gas phase, 
kv= PV/Pl; DI is the coefficient of binary diffusion, and R is the gas constant.% 

If the phase transformations at the phase separation boundary occur at nonequilibrium, 
the vapor pressure at the boundary PVZ differs from the saturation pressure Pvs(Tz). The non- 
equilibrium condensation intensity at the interphase surface is given by the Hertz-Knudsen- 
Langmuir equation [8] 

t r 

['10 T~ Plo ' ~ 0  ~V ~CI0 ' P V S ~ ,  dT ] Z, (5) 

where ~B i s  t h e  c h a r a c t e r i s t i c  t ime  o f  vapo r  p a r t i a l  p r e s s u r e  m a t c h i n g  a t  t h e  i n t e r p h a s e  
bounda ry ,  d e p e n d i n g  on t h e  v a l u e  o f  t h e  a c c o m o d a t i o n  c o e f f i c i e n t  ~; C i s  t h e  sound v e l o c i t y ;  
y i s  t h e  a d i a b a t i c  i n d e x ,  and t h e  s u b s c r i p t  s r e f e r s  t o  p a r a m e t e r s  a t  t h e  phase  e q u i l i b r i u m  
l i n e .  

The system of equations (i)-(5) is used to investigate acoustic perturbations in rare- 
gas mixtures with the vapor and with fluid drops. 

The investigation of propagation of weak perturbations of arbitrary profile in these 
media by means of analytic methods is often conducted on the basis of a single wave equation. 
In this context it is useful to obtain such an equation for the vapor-gas-drop mixture 
described by the system (i)-(5). In the general case these contributions are quite awkward, 
therefore we restrict ourselves to the analysis of two specific examples. 

The simplest case is that of a gas with solid particles without phase transformations 
(k V = 0), treated earlier in [I0]. In that case the wave equation for the pressure pertur- 
bation can be written in the following form convenient for analysis: 
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Here T T is the characteristic time of temperature matching between particles and the gas, and 
C e is the equilibrium speed of sound in the two-phase mixture, determined by the expression 

[ ] c~n+'ncz v+ ~/", V~. = ( 7 )  
Ce : Cj (t "t: m) +F~ %1 -~- mr~ 

(u  i s  t h e  a n a l o g  e q u i l i b r i u m  a d i a b a t i c  index  f o r  a gas  s u s p e n s i o n ) .  

It is easily seen that if thermodynamic equilibrium between the mixture phases is estab- 
lished instantaneously (rv ~ TT ~ 0), then the pressure perturbations propagate in the me- 
dium with the equilibrium speed of sound C e. For Tv, rT § ~ the interphase interaction is 
frozen, and the acoustic waves propagate with the frozen speed of sound Cf = C I. 

We note that in the absence of interphase friction (T v = 0) Eq. (6) simplifies and 
agrees with the corresponding equation in [ii]. In the absence of particles (m = 0, ~v = 
ZT = 0) we have the ordinary wave equation for a gas, when there are no wave dispersion and 
dissipation. 

Consider a suspension with phase transformations. We restrict ourselves to the special 
case of small mass drop content (m << I), when the effect of interphase mass exchange on wave 
propagation is most substantial [8]~ For a mixture of vapor with drops (k V = i), in the 
absence of quasiequilibrium phase transformations (T Z = T S) the evolution equation for pressure 

%The complex times ~ (i = v, TI, T2, p), used in writing f, qj2, JVZ, are close to their 
real quasistationary values ~i at frequencies mT v < 1 [3, 8]. 
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Here C e is the equilibrium speed of sound (7) in the gas and drop mixture with index Ye = 

[i + (~+mT~ -- 2~/(71~)] -I. If one of the relaxation processes of the interphase interaction 
with characteristic time T i (i = v, TI, T2) is absent, then @i= 0 and the order of Eq. (8) 
is reduced. Thus, in studying propagation of waves whose harmonic components have frequen- 
cies m~T2 ~ 1 the effect of temperature inhomogeneity inside the drop (the difference be- 
tween T 2 and TE) can be neglected, and in Eq. (8) one can take ~T~ = 0, i.e., ~, =.=(i. 

Equations (6) and (8) describe propagation of linear waves in suspensions in both the 
positive and negative directions of the coordinate x. Their analytic solution encounters 
large difficulties. In this context we use the method of slowly varying profiles [12], 
substantially simplifying the solution of the problem and valid for dissipative systems, 
when the attenuation decrement per wavelength o = 2~K**/K (K, K** are the real and imaginary 
parts of the complex wave number K,) is small (~ ~ i) for all harmonic components of the per- 
turbation. 

For gas suspensions, in the absence of phase transformations the maximum value of the 
coefficient o is achieved at frequencies ~T v ~ ~T ~ i. In that case the maximum value is 
Oma x ~ my/2, and for low particle mass content (m ~ i) the coefficient o is small in the 
whole frequency region under consideration w~ v < i. 

In the case of suspensions with phase transitions the coefficient can have two maxima, 
realized at frequencies ~T v ~ m and ~v - i [8]. The value of the first maximum of o can 
also be substantial for drop content m ~ 1 [8]. In that case, for smallness of o it is 
necessary to impose additional restrictions on the frequencies of harmonic components; more 
precisely: w~ v ~ m. # 

Within the assumptions made we investigate the propagation of perturbations traveling 
to the right. We transform to the accompanying coordinate system, and introduce the new 
variables [12] ~ = t - x/C~, $ = ~x. As a result of the transformation each of the equations 
(6), (8) transforms to an equation of the type of the thermal conduction equation 

OP' /Ox:=Ag~P' /Sq ~ (] =G, V) (9) 

with a known general solution [13]. Here Aj (j = G, V) are coefficients characterizing the 
absorption of acoustic waves. 

For a mixture of gas with particles without phase transformations, for the coefficient 
A G we have 

= -- =- ~T (~<~), (i0) 
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~The n o n e q u i l ' i b r i u m  o f  i n t e r p h a s e  m a s s  e x c h a n g e  w i l l  a f f e c t  wave  p r o p a g a t i o n  o n l y  a t  q u i t e  
h i g h  f r e q u e n c i e s  o f  h a r m o n i c  c o m p o n e n t s ,  when [8 ]  

$We n o t e  t h a t  f o r  t h e  r e s t r i c t i o n s  c o n s i d e r e d  on f r e q u e n c y ,  due  t o  t h e  s m a l l n e s s  o f  d r o p  m a s s  
c o n t e n t  m t h e  d i s p e r s i o n  i n  t h e  s p e e d  o f  s o u n d  c a n  b e  n e g l e c t e d ,  and  one  c a n  Cake  C e = C 1 .  
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while in the case of vapor with drops in the presence of interphase mass exchange 

i {m~ + /,.TT~ + 12~r~ } (~o~ < m), A v = ~  
' ( 1 1 )  

I, (?t t)(1 -7 i  ,, = - -  - -  c~,l)",  I~ .= mc2/l. 

We point out that, as a rule, ~T2 << Zv, ZT1; 12 << m, 1 I, therefore the last term in (Ii), 
related to the temperature inhomogeneity inside the drop, can be neglected due to its small- 
ness �9 

We note that expressions (i0), (ii) for the coefficients Aj (j = G, V) agree, due to the 
restrictions imposed on the frequencies, with the corresponding low-frequency asymptotic ex- 
pressions for the attenuation coefficients K**(~) [6]. For a known dependence K**(e) this 
makes it possible to write down an equation of type (9) for the general case of a two-compo- 
nent, two-phase mixture of gas, vapor, and fluid drops. The expression for the coefficient 
Am, following from the low-frequency asymptotic expression for K**(~) [6], is 

%, J 3 [mA, l e v ( A ~  + !  ~ 

where the coefficients Aj (j = i,...,4) are determined from 
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We note that the relationship for A m (12) agrees with the expressions for A G (i0) and A V (ii) 
for the limiting values k V = 0 and k V = i, ~ = 0, respectively. The first term m in the 
brackets of expression (12) determines the contribution of interphase friction. The rela- 
tions containing the components Aj (j = i, .... 4) characterize interphase heat and mass trans- 
fer. In that case, due to the low drop mass content (m << i) at vapor concentrations k V > m 
the term with A a is predominant due to the factor i/m. Thus, the attenuation of long-wave 
perturbations considered with frequency harmonics ~v < m in aerosols with mass exchange in 
a wide region of variation of vapor concentration m ~ ]ev ~-~ ~1 is basically determined by inter- 
phase heat and mass transfer. It must also be emphasized that if the coefficient A G (18) is 
directly proportional to the particle mass content m for mixtures of gas with solid particles, 
then for suspensions with phase transformations the dependences Av(m) (ii) and Am(m) (12), 
(13) are more complicated functions of m. 

Due to the assumptions made the attenuation of perturbations at distances of the order 
of the wavelength is low. At large distances, however, the contribution of dissipative ef- 
fects accumulates and becomes substantial. According to the general solution of Eq. (9) [13] 
the behavior of an isolated pulse at large distances is described by the universal asymptotic 
expression 

~,xp ("?/"-'b") J" , p'  /]) ]/4m4./~,: p,,(~.)d~, i=G,  V. m, (14) 

where P0 is the initial perturbation at the point x = 0. The solution (14) corresponds to a 
pulse of Gaussian shape. Due to the predominant absorption of high-frequency spectral compo- 
nents the width of curve (14) increases proportionally to (Ajx) I/z, in which case the wave 
amplitude decreases as ~i/(Ajx)i/2. 

Consider the more general case of substantial attenuation of weak pulse perturbations in 
vapor-gas-drop systems.% According to Fourier analysis representations, an arbitrary space- 
time pulse can be represented as an integral [12] 

( 1 5  ) 
- - ( 3 0  

#Several results of investigating pulse evolution in a bubbly fluid were given in [14]. 
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where the spectral function P(m) is found from the given initial signal: 

P((o) = 2- Z - p((),Oe;~"ldL (16)  
- - o o  

R e l a t i o n s h i p  (15)  d e t e r m i n e s  t h e  i n v e r s e  F o u r i e r  t r a n s f o r m  P(w) ,  w h i l e  (15)  d e t e r m i n e s  t h e  
d i r e c t  F o u r i e r  t r a n s f o r m  f u n c t i o n  p ( 0 ,  t ) .  

Due t o  t h e  awkwardness  o f  t h e  d i s p e r s i o n  d ep en d en ce  K.,.(m) [ 8 ] ,  t h e  a n a l y t i c  d e t e r m i n a -  
t i o n  o f  t h e  f u n c t i o n  p ( x ,  t )  by Eq. (15)  w i t h  a c c o u n t  o f  (26)  i s  q u i t e  d i f f i c u l t .  In  t h i s  
c o n n e c t i o n  i t  i s  a d v i s a b l e  t o  f i n d  p ( x ,  t )  n u m e r i c a l l y ,  f o r  which p u r p o s e  we u s e  methods  of  
t h e  d i s c r e t e  F o u r i e r  t r a n s f o r m ,  r e p r e s e n t i n g  t h e  p u l s e  p ( x ,  t )  as  a f i n i t e  sum o f  harmonic  
waves : 

L--] 

p(x, t) = ~ z,,, exp [K, (m,~).r-- io,,,,t]. (17) 

For x = 0 we have 
L--I 

p(0, 0 = ~ z,~e~p(--i~,,,,~0. (18) 
7~1 : 0 

Accord ing  to  ( 17 ) ,  to  de te rm ine  p ( x ,  t )  i t  i s  necessa ry  to  f i n d  the  c o e f f i c i e n t s  z m, i n  which 
case relation (18) must be satisfied. To find the coefficients z m and determine p(x, t) by 
computer we use the fast Fourier transform (FFT) algorithm [15-17], allowing one to reduce 
substantially the number of arithmetic operations required. 

Expanding the initial pulse in a discrete Fourier series and combining its harmonic 
components in the new position, one obtains the transformed pulse formed under the actions 
of dispersion and dissipation. Several results of calculating the propagation and attenua- 
tion process of weak pulses of pressure perturbations in a mixture of air with vapor and 
water drops of radius a = 2.10 -6 m at host phase pressure Pl = 0.i MPa are illustrated in 
Figs. i and 2. The vapor concentration in the gas phase was k V = 0.i (T o = 327 K), with the 
accommodation coefficient being $ = 0.04. The initial perturbation (primed lines) created 
at the boundary of the two-phase mixture was given in the form p(0, t) = exp [-((t - t,)/ 
N)2]. The pulse duration was ~5.10 -3 sec, and the frequencies of its fundamental harmonics 
were located in the frequency interval m% v ~ i, i.e., the pulse considered was quite long. 

The calculations were carried out by means of the dispersion relation of [8] with the 
use of FFT subroutines [16]. The number of harmonics L was selected from the condition of 
pulse motion without distortion in the absence of wave dispersion and dissipation (K, = 
m/C1). Accuracy control of the calculations was realized by recalculation with doubling 
the number of harmonics. 

The evolution pattern of a weak pressure pulse in vapor-gas-drop mixtures with various 
mass contents of the condensed phase m is shown in Fig. i by solid lines (the dashed-dotted 
lines are the pulse evolution at frozen mass exchange $ = 0). The calculated profiles (os- 
cillograms) correspond to distances 4 and 8 m from the pulse minimum positions. 

The propagation of low-amplitude perturbation pulses, represented in the form of super- 
positions of monochromatic harmonics, occurs according to the propagation laws of weak mono- 
chromatic waves [8]. In this context and according to the results obtained above for mono- 
chromatic waves the attenuation of long-wave pulses in gas suspensions with phase transfor- 
mations depends nonmonotonically on the mass content of the suspended phase m. Thus, for 
m = 0.i the attenuation is not only higher than for m = 0.01, but also higher than for m = 
1.0. The interphase mass exchange can strongly affect the perturbation attenuation. For 
m = 0.i the contribution of mass exchange to pulse attenuation is substantial (compare the 
solid and dashed-dotted curves of Fig. i). As to the pulse propagation rate, for the thermo- 
physical medium parameters considered it is practically independent of the presence or ab- 
sence of mass exchange. If this drop mass content is sufficiently high (m = I), the presence 
or absence of mass exchange affects weakly both the p~opagation rate and attenuation coef- 
ficients of weak pulses (the dashed-dotted lines practically coincide with the solid ones). 
The attenuation of weak pulse perturbations in gas suspensions without phase transformations 
is proportional to the particle mass content m, and always increases with increasing m. 

The effect of interphase friction on the evolution process of low amplitude pulse per- 
turbations in aerial fog is illustrated in Fig. 2 (dashed-dotted lines) for various drop 
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mass contents. It is seen that most of the effect on attenuation of long-wave pulse pertur- 
bations in aerosols with phase transformations is due to interphase heat and mass transfer. 
For increasing mass content of the condensed phase up to values m ~ 1 the effect of inter- 
phase friction on pulse attenuation increases, while the effect of interphase heat and mass 
transfer on wave propagation remains, nevertheless, substantial. 
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A STATEMENT OF THE PROBLEM OF THERMAL DIAGNOSTICS FOR A "PROTECTIVE" LAYER 

V. A. Lomazov UDC 536.24+517.946 

By the problem of diagnostics we understand the task of determining the characteristics 
of a body from information obtained by experiment about physical fields which arise in it 
under the influence in a special way of assembled external effects [i, 2]. The operating 
conditions for a number of articles connected with the combined effect of irradiation, force 
and thermal loading, strong magnetic fields, and corrosive media necessitate provision of the 
required safety. Here considerable attention should be devoted to studying the destructive 
effect of these actions on material characteristics both within the scope of periodic moni- 
toring of the condition of the operating structure, and within a schedule of laboratory tests 
on the materials developed [3]. 

In the present work the task is considered of determining changes in the specific heat 
capacity and thermal conductivity coefficient of a material (as a result of accumulation of 
microdamage) for a weak curvilinear "protective" layer from the results of thermocouple mea- 
surements of temperature at its accessible surface, and at the same time the other surface 
is subject to the destructive effect of a corrosive medium. The possibility is studied of 
determining the change in layer thickness (which may also occur as a result of the effect 
of destructive factors) and clarification of the corrosive medium temperature. In mathe- 
matical scheme the problem relates to the type of reverse problems of mathematical physics 
[4]. 

I. According to [5] spreading of heat in a nonuniform curvilinear layer ~ ~ {(xl, x2, 

x ~ ) l - - ~  < x,, x~ < ~ ,  7J ~< x~ ~< 72}, 

( ) ~ < 7 , < ? 2 ~ < H - - c o . s t ,  71 =?l(X,, x2), 
72 =72(xl, x2, t ) ~  C L 

(Fig. i) may be described by the relationships 

C~@' - -  (K0~).~ : / ;  ( 1 . 1 )  

(c~O + bn~O,O [:,W:v~ = P ('~. ~'~, O, ( 1 . 2  ) 

= + vi,, + = (I + 71., + 7L) = I, 
0 I, a =~2 = q (x,, x,,  l); ( 1 . 3 )  

0Jr=0 - '  r  x2, x~). ( 1 . 4 )  

H e r e  s p e c i f i c  h e a t  c a p a c i t y  C~ a n d  t h e  t h e r m a l  c o n d u c t i v i t y  c o e f f i c i e n t  f o r  t h e  l a y e r  K d e -  
p e n d  on s p a t i a l  v a r i a b l e s  x = ( x i ,  x 2 ,  x 3 )  , a n d  r e l a t i v e  t e m p e r a t u r e  8 i s  a f u n c t i o n  o f  • 
and  t i m e  t .  A p e r i o d  means  p a r t i a l  d e r i v a t i v e  w i t h  r e s p e c t  t o  t i m e ,  t h e  i n d e x  a f t e r  a comma 
i s  d e r i v a t i v e  w i t h  r e s p e c t  t o  t h e  c o r r e s p o n d i n g  c o o r d i n a t e ,  a n d  e v e r y w h e r e  k = 1,  2 ,  i = t ,  2 ,  
3 ,  m = 1, 2 ,  . . . .  Summing i s  c a r r i e d  o u t  f o r  a r e p e a t e d  i n d e x  ( i f  n o t  s t i p u l a t e d  t o  t h e  c o n -  
t r a r y ) .  Boundary condition (1.2) is the condition of heat exchange at the outer (accessible) 
surface of the layer x 3 = TI- Condition (1.3) is given at the inner (in contact with some 
corrosive medium of temperature q) surface x 3 = T2. This surface is assumed to be inacces- 
sible for performing direct measurements, and in view of the effect of various factors its 
geometry may change with the passage of time, i.e., 72 = Y2(xl, x2, t). 

The diagnostic problem considered by us involves determining specific heat capacity K(x) 
and thermal conductivity coefficient C~{x), and also in clarifying the geometry of the layer 
[functions u x2, t) and corrosive medium temperature q(x, t) from two problems of the 
form (1.1)-(1.4) with different conditions for initiating thermal processes [after substi- 
tuting {6, /, p, T}~--~ {0, /, p, ~} in (1.1)-(1.4)] from supplementary information 
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